Implementing a Machine Learning solution with Azure Databricks (DP-3014)
placeUtrecht 20 mrt. 2026Toon rooster event 20 maart 2026, 09:00-16:00, Utrecht |
Meer weten over de onderwerpen die aan bod komen en de vereiste voorkennis? Neem vrijblijvend contact met ons op.
Learn to train, tune and manage machine learning models with Azure Databricks
Description
Azure Databricks is a cloud-scale platform for data analytics and machine learning. Data scientists and machine learning engineers can use Azure Databricks to implement machine learning solutions at scale.
Subjects
Explore Azure Databricks- Provision an Azure Databricks workspace.
- Identify core workloads and personas for Azure Databricks.
- Describe key concepts of an Azure Databricks solution.
- Describe key elements of the Apache Spark architecture.
- Create and configure a Spark cluster.
- Describe use cases for Spark.
- Use Spark to process and analyze data stored in fil…
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Meer weten over de onderwerpen die aan bod komen en de vereiste voorkennis? Neem vrijblijvend contact met ons op.
Learn to train, tune and manage machine learning models with Azure Databricks
Description
Azure Databricks is a cloud-scale platform for data analytics and machine learning. Data scientists and machine learning engineers can use Azure Databricks to implement machine learning solutions at scale.
Subjects
Explore Azure Databricks- Provision an Azure Databricks workspace.
- Identify core workloads and personas for Azure Databricks.
- Describe key concepts of an Azure Databricks solution.
- Describe key elements of the Apache Spark architecture.
- Create and configure a Spark cluster.
- Describe use cases for Spark.
- Use Spark to process and analyze data stored in files.
- Use Spark to visualize data.
- Prepare data for machine learning
- Train a machine learning model
- Evaluate a machine learning model
- Use MLflow to log parameters, metrics, and other details from experiment runs.
- Use MLflow to manage and deploy trained models.
- Use the Hyperopt library to optimize hyperparameters.
- Distribute hyperparameter tuning across multiple worker nodes.
- Use the AutoML user interface in Azure Databricks
- Use the AutoML API in Azure Databricks
- Train a deep learning model in Azure Databricks
- Distribute deep learning training by using the Horovod library
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

