Implementing a Lakehouse with Microsoft Fabric (DP-601)

Tijdsduur
Locatie
Op locatie
Startdatum en plaats

Implementing a Lakehouse with Microsoft Fabric (DP-601)

Info Support
Logo van Info Support
Opleiderscore: starstarstarstarstar_border 8,3 Info Support heeft een gemiddelde beoordeling van 8,3 (uit 15 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeVeenendaal
6 mrt. 2026
Toon rooster
event 6 maart 2026, 09:00-16:00, Veenendaal
Beschrijving

Meer weten over de onderwerpen die aan bod komen en de vereiste voorkennis? Neem vrijblijvend contact met ons op.

Learn to work with lakehouses in Microsoft Fabric

Description

This course is designed to build your foundational skills in data engineering on Microsoft Fabric, focusing on the Lakehouse concept. This course will explore the powerful capabilities of Apache Spark for distributed data processing and the essential techniques for efficient data management, versioning, and reliability by working with Delta Lake tables. This course will also explore data ingestion and orchestration using Dataflows Gen2 and Data Factory pipelines.

This course includes a combination of lectures and hands-on exercises that will prepare you to work with lakehouses in Microsoft Fabric.

Audience Profile The primary audi…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Machine learning, Microsoft SQL Server, Big Data, MySQL en Datavisualisatie.

Meer weten over de onderwerpen die aan bod komen en de vereiste voorkennis? Neem vrijblijvend contact met ons op.

Learn to work with lakehouses in Microsoft Fabric

Description

This course is designed to build your foundational skills in data engineering on Microsoft Fabric, focusing on the Lakehouse concept. This course will explore the powerful capabilities of Apache Spark for distributed data processing and the essential techniques for efficient data management, versioning, and reliability by working with Delta Lake tables. This course will also explore data ingestion and orchestration using Dataflows Gen2 and Data Factory pipelines.

This course includes a combination of lectures and hands-on exercises that will prepare you to work with lakehouses in Microsoft Fabric.

Audience Profile The primary audience for this course is data professionals who are familiar with data modeling, extraction, and analytics. It is designed for professionals who are interested in gaining knowledge about Lakehouse architecture, the Microsoft Fabric platform, and how to enable end-to-end analytics using these technologies.

Subjects

  1. Introduction to end-to-end analytics using Microsoft Fabric
  2. Get started with lakehouses in Microsoft Fabric
  3. Use Apache Spark in Microsoft Fabric
  4. Work with Delta Lake tables in Microsoft Fabric
  5. Ingest Data with Dataflows Gen2 in Microsoft Fabric
  6. Use Data Factory pipelines in Microsoft Fabric
Introduction to end-to-end analytics using Microsoft Fabric

Discover how Microsoft Fabric can meet your enterprise's analytics needs in one platform. Learn about Microsoft Fabric, how it works, and identify how you can use it for your analytics needs.

Goals:

  • Describe end-to-end analytics in Microsoft Fabric
Get started with lakehouses in Microsoft Fabric

Lakehouses merge data lake storage flexibility with data warehouse analytics. Microsoft Fabric offers a lakehouse solution for comprehensive analytics on a single SaaS platform.

Goals:

  • Describe core features and capabilities of lakehouses in Microsoft Fabric
  • Create a lakehouse
  • Ingest data into files and tables in a lakehouse
  • Query lakehouse tables with SQL
Use Apache Spark in Microsoft Fabric

Apache Spark is a core technology for large-scale data analytics. Microsoft Fabric provides support for Spark clusters, enabling you to analyze and process data in a Lakehouse at scale.

Goals:

  • Configure Spark in a Microsoft Fabric workspace
  • Identify suitable scenarios for Spark notebooks and Spark jobs
  • Use Spark dataframes to analyze and transform data
  • Use Spark SQL to query data in tables and views
  • Visualize data in a Spark notebook
Work with Delta Lake tables in Microsoft Fabric

Tables in a Microsoft Fabric lakehouse are based on the Delta Lake storage format commonly used in Apache Spark. By using the enhanced capabilities of delta tables, you can create advanced analytics solutions.

Goals:

  • Understand Delta Lake and delta tables in Microsoft Fabric
  • Create and manage delta tables using Spark
  • Use Spark to query and transform data in delta tables
  • Use delta tables with Spark structured streaming
Ingest Data with Dataflows Gen2 in Microsoft Fabric

Data ingestion is crucial in analytics. Microsoft Fabric's Data Factory offers Dataflows (Gen2) for visually creating multi-step data ingestion and transformation using Power Query Online.

Goals:

  • Describe Dataflow (Gen2) capabilities in Microsoft Fabric
  • Create Dataflow (Gen2) solutions to ingest and transform data
  • Include a Dataflow (Gen2) in a pipeline
Use Data Factory pipelines in Microsoft Fabric

Microsoft Fabric includes Data Factory capabilities, including the ability to create pipelines that orchestrate data ingestion and transformation tasks.

Goals:

  • Describe pipeline capabilities in Microsoft Fabric
  • Use the Copy Data activity in a pipeline
  • Create pipelines based on predefined templates
  • Run and monitor pipelines
Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.