R for data analytics (EN/NL/FR)

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

R for data analytics (EN/NL/FR)

ABIS
Logo van ABIS
Opleiderscore: starstarstarstarstar_border 8 ABIS heeft een gemiddelde beoordeling van 8 (uit 1 ervaring)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen

placeLeuven
4 dec. 2024 tot 6 dec. 2024
Toon rooster
event 4 december 2024, 09:00-17:00, Leuven
event 5 december 2024, 09:00-17:00, Leuven
event 6 december 2024, 09:00-17:00, Leuven
computer Online: Online
4 dec. 2024 tot 6 dec. 2024
Toon rooster
event 4 december 2024, 09:00-17:00, Online
event 5 december 2024, 09:00-17:00, Online
event 6 december 2024, 09:00-17:00, Online

Beschrijving

This 3 day ABIS course will give you hands-on practice with R, both as a data analytics and graphical tool, and as a programming and scripting environment where you can let the system give you any possible insight into your data that you may want.

Intended for whoever wants to start practising data analysis in a "big data" context: developers, data architects, marketeers, and anyone who needs to manipulate, visualize, or summarize their corporate data. This course is also a first introduction to the R programming language, so anyone who wants to start using R or one of its many packages is welcome.

Remark: Course description in English; Dutch and French versions are available on the ABIS w…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Data science met R, R, Data Analyse, Big Data en Data Science.

This 3 day ABIS course will give you hands-on practice with R, both as a data analytics and graphical tool, and as a programming and scripting environment where you can let the system give you any possible insight into your data that you may want.

Intended for whoever wants to start practising data analysis in a "big data" context: developers, data architects, marketeers, and anyone who needs to manipulate, visualize, or summarize their corporate data. This course is also a first introduction to the R programming language, so anyone who wants to start using R or one of its many packages is welcome.

Remark: Course description in English; Dutch and French versions are available on the ABIS website. Courses are planned in Dutch, English, and French. Consult the ABIS website for alternate course formats.

Main Topics - Content

Part I - R fundamentals

Getting started

  • installing R (Linux / Windows / MAC)
  • getting to learn the command line interface and the Rstudio GUI
  • first steps with R: interactive commands; obtaining online help
  • basic concepts: expressions (numeric, textual); commands & functions; variables & assignment

R basics

  • "atomic" data types and how to write their constants: double (numeric), character, integer, logical
  • numeric and logical operators
  • the special values Inf, NaN, NA, and NULL
  • the vector type; operator "c()"; so-called coercing; vector operators
  • the "package" concept of R
  • CRAN and www.r-project.org

More "structural" data types

  • lists (hierarchical data) and matrices

Functions and attributes

  • positional and named parameters
  • creating your own functions
  • R scripts; the startup script; scope of variables; writing comments
  • dump, load, source and related commands
  • dir, ls, getwd and setwd
  • package loading, or using the "::" notation
  • control flow: if, while, for
  • the explicit "print" function; the "cat" function
  • other useful functions: length, names, dimnames, unlist, cbind, rbind, c, as.<type>, is.<type>, order(vector), ...

Part II -- Data analytics with R

Structured data

  • Objects and attributes
  • lists, names(), dimnames(), factors
  • reading / writing (structured) data from/to files: read.table; read.csv; readLines, write.csv, ...
  • how to be memory-efficient with large volumes of data
  • data frames
  • how to use a database as "back store"

Packages

  • how to install a (third party) R package
  • examples: the "stats" package and the "ggplot2" package
  • other useful packages: foreign (for reading/writing data of SAS, SPSS, dBase, etc.); XML; AER; tm; vcd; DBI; RODBC

Statistical techniques

  • Random Number Generators
  • sampling, summarizing: basic statistical terminology & techniques
  • examples from the "stats" package; the lm functions
  • plotting statistical graphs (scatter plots, histograms, trend lines, ...)

Audience: Everyone wanting to get some experience working with BigData environments - and R.

Background: Familiarity with the concepts of data stores and 'big data', as well as having notions of statistics. Familiarity with the concepts of a programming language.

Didactics: Classroom instruction with practical exercises.

Duration: 3 days.

Blijf op de hoogte van nieuwe ervaringen

Er zijn nog geen ervaringen.

Deel je ervaring

Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.