Applied Computer Vision Essentials [GK840043]

Tijdsduur
Locatie
Op locatie, Online
Startdatum en plaats

Applied Computer Vision Essentials [GK840043]

Global Knowledge Network Netherlands B.V.
Logo van Global Knowledge Network Netherlands B.V.
Opleiderscore: starstarstarstar_halfstar_border 7,5 Global Knowledge Network Netherlands B.V. heeft een gemiddelde beoordeling van 7,5 (uit 185 ervaringen)

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
computer Online: VIRTUAL TRAINING CENTER
27 apr. 2026 tot 30 apr. 2026
Toon rooster
event 27 april 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252733.1
event 28 april 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252733.2
event 29 april 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252733.3
event 30 april 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252733.4
placeNieuwegein (Iepenhoeve 5)
4 mei. 2026 tot 7 mei. 2026
Toon rooster
event 4 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL252734.1
event 5 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL252734.2
event 6 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL252734.3
event 7 mei 2026, 09:00-17:00, Nieuwegein (Iepenhoeve 5), NL252734.4
computer Online: VIRTUAL TRAINING CENTRE
4 mei. 2026 tot 7 mei. 2026
Toon rooster
event 4 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252734V.1
event 5 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252734V.2
event 6 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252734V.3
event 7 mei 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252734V.4
computer Online: VIRTUAL TRAINING CENTER
8 jun. 2026 tot 11 jun. 2026
Toon rooster
event 8 juni 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252735.1
event 9 juni 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252735.2
event 10 juni 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252735.3
event 11 juni 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252735.4
computer Online: VIRTUAL TRAINING CENTER
1 sep. 2026 tot 4 sep. 2026
Toon rooster
event 1 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252736.1
event 2 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252736.2
event 3 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252736.3
event 4 september 2026, 10:00-18:00, VIRTUAL TRAINING CENTER, NL252736.4
placeEindhoven (Evoluon Noord Brabantlaan 1)
7 sep. 2026 tot 10 sep. 2026
Toon rooster
event 7 september 2026, 09:00-17:00, Eindhoven (Evoluon Noord Brabantlaan 1), NL252737.1
event 8 september 2026, 09:00-17:00, Eindhoven (Evoluon Noord Brabantlaan 1), NL252737.2
event 9 september 2026, 09:00-17:00, Eindhoven (Evoluon Noord Brabantlaan 1), NL252737.3
event 10 september 2026, 09:00-17:00, Eindhoven (Evoluon Noord Brabantlaan 1), NL252737.4
computer Online: VIRTUAL TRAINING CENTRE
7 sep. 2026 tot 10 sep. 2026
Toon rooster
event 7 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252737V.1
event 8 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252737V.2
event 9 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252737V.3
event 10 september 2026, 09:00-17:00, VIRTUAL TRAINING CENTRE, NL252737V.4
computer Online: VIRTUAL TRAINING CENTER
26 okt. 2026 tot 29 okt. 2026
Toon rooster
event 26 oktober 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252738.1
event 27 oktober 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252738.2
event 28 oktober 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252738.3
event 29 oktober 2026, 09:00-17:00, VIRTUAL TRAINING CENTER, NL252738.4
Beschrijving

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

Learn to build, deploy, and evaluate modern computer vision systems—from classical techniques to cutting-edge deep learning.

Applied Computer Vision Essentials is a hands-on course designed for professionals eager to deepen their understanding of modern computer vision techniques. Whether you're transitioning from classical image processing or already working with deep learning models, this course offers a structured path to mastering the tools and concepts that power today’s most advanced visual systems. From edge detection and feature extraction to segmentation and multimodal pipelines, learners will explore the full spectrum of computer vision applications through practical labs …

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Computervaardigheden, Microsoft Outlook, Microsoft Powerpoint en Apple iWork (Keynote, Numbers, Pages).

Ontdek de verschillende trainingsmogelijkheden bij Global Knowledge

Online of op locatie er is altijd een vorm die bij je past.

Kies op welke manier jij of je team graag een training wilt volgen. Global Knowledge bied je verschillende trainingsmogelijkheden. Je kunt kiezen uit o.a. klassikaal, Virtueel Klassikaal (online), e-Learning en maatwerk. Met onze Blended oplossing kun je de verschillende trainingsvormen combineren.

OVERVIEW

Learn to build, deploy, and evaluate modern computer vision systems—from classical techniques to cutting-edge deep learning.

Applied Computer Vision Essentials is a hands-on course designed for professionals eager to deepen their understanding of modern computer vision techniques. Whether you're transitioning from classical image processing or already working with deep learning models, this course offers a structured path to mastering the tools and concepts that power today’s most advanced visual systems. From edge detection and feature extraction to segmentation and multimodal pipelines, learners will explore the full spectrum of computer vision applications through practical labs and real-world scenarios.

Participants will gain experience with cutting-edge frameworks like YOLOv9, SAM 2, and DINOv2, while building and deploying models in a GPU-enabled Ubuntu environment. The course emphasizes not just technical proficiency but also ethical considerations, including bias auditing and production monitoring. With a curriculum that blends theory, demos, and capstone projects, learners will leave equipped to tackle challenges in domains ranging from industrial automation to health tech and retail analytics.

Ideal for software engineers, data scientists, and MLOps professionals, this course bridges the gap between foundational knowledge and applied expertise. Whether you're optimizing models for edge deployment or integrating vision with language models for safety reporting, Applied Computer Vision Essentials provides the skills and confidence to build robust, scalable solutions.

OBJECTIVES

  • Apply classical computer vision techniques for edge detection, feature extraction, and lane detecti
  • Analyze color spaces, histogram equalization, and contrast enhancement methods for image quality improvement       
  • Create data augmentation pipelines and fine-tune CNN architectures like EfficientNet for classification
  • Evaluate object detection performance using mAP and IoU metrics with TIDE error analysis
  • Implement YOLO training workflows for safety compliance with hyperparameter optimization
  • Compare segmentation approaches from traditional methods to modern promptable SAM 2
  • Construct Vision Transformer solutions using DINOv2 and self-supervised learning principles
  • Synthesize multimodal pipelines integrating detection, CLIP embeddings, and language models for alt-text generation       
  • Optimize models for production through ONNX conversion, INT8 quantization, and edge deployment
  • Assess computer vision systems for bias and fairness while implementing production monitoring with Prometheus

AUDIENCE

Sample learning personas:

Rajesh Singh – Senior software engineer, industrial-automation firm, Bengaluru, India. Uses classical OpenCV; needs a roadmap for defect and lane detection with deep learning.

Maria Alvarez – Data scientist, retail supply-chain analytics, Guadalajara, Mexico. Comfortable with PyTorch classifiers; wants hands-on object detection and edge deployment for PPE compliance.

Esther Ndiaye – Machine-learning engineer, health-tech start-up, Dakar, Senegal. NLP background; seeks robust instrument segmentation and guidance on regulatory alignment.

Lucas Chen – DevOps engineer moving into MLOps, Toronto, Canada. Strong in Docker and CI/CD; aims to learn model quantisation, monitoring, and bias auditing for a vision API.

CONTENT

Foundations & Classical Computer Vision

  • Pixels, color spaces, convolution filters
  • Lane‑finding with Canny + Hough
  • Histogram equalisation & CLAHE
  • Low‑light rescue with CLAHE
  • Feature extraction: classical descriptors
  • Image matching: ORB vs SIFT
  • CVAT annotation + COCO export
  • Wrap-up: bridging classical to modern CV

Deep Learning for Computer Vision

  • Classical to deep transition
  • CNN architectures & evolution
  • Data‑augmentation strategies
  • AutoAugment & RandAugment demo
  • Fine‑tune EfficientNet‑V2‑S + Grad‑CAM
  • Intro to object detection & YOLO family
  • YOLOv11‑nano training start
  • Detection metrics & interpretation; TIDE taxonomy
  • Model robustness discussion

Advanced Vision: Segmentation & Transformers

  • From detection to segmentation
  • Segmentation approaches
  • SAM 2: promptable segmentation
  • SAM 2 segmentation vs YOLO masks
  • Vision Transformers revolution
  • Video processing fundamentals
  • Attention rollout visualisation
  • Self-supervised learning
  • Fine‑tune DINOv2‑tiny
  • Modern CV landscape
  • Capstone prep

Modern Applications & Integration

  • Recap: CV evolution journey
  • Vision-language models
  • Image & video generation
  • Detector → CLIP → LLM safety report
  • Model deployment essentials
  • ONNX conversion & optimization
  • Production monitoring demo
  • Adversarial robustness
  • Ethics in Computer Vision
  • Wrap-up; Q&A
  • Capstone demos
Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
infoEr is een telefoonnummer vereist om deze informatieaanvraag in behandeling te nemen. (optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.