Star Schema Modeling in Practice for Data Analysts

Niveau
Tijdsduur
Locatie
Op locatie
Startdatum en plaats

Star Schema Modeling in Practice for Data Analysts

D-Data
Logo van D-Data

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Startdata en plaatsen
placeDen Bosch
9 apr. 2026
check_circle Startgarantie
Toon rooster
event 9 april 2026, 09:00-16:30, Den Bosch
placeDen Bosch
1 sep. 2026
check_circle Startgarantie
Toon rooster
event 1 september 2026, 09:00-16:30, Den Bosch
placeDen Bosch
7 dec. 2026
check_circle Startgarantie
Toon rooster
event 7 december 2026, 09:00-16:30, Den Bosch
Beschrijving

In this course, you will learn how to transform raw, unoptimized source data into a well-designed star schema with fact and dimension tables. You will work with Power Query, Power BI, and Microsoft Fabric (Warehouse and Lakehouse) to build a robust semantic layer that makes reporting simpler, faster, and more reliable. The focus is entirely on practical modeling: from analyzing source structures to designing a scalable star model ready for reporting, analytics, and data science.

What you learn

  • The fundamentals of dimensional modeling and the star schema.

  • The purpose of fact and dimension tables and when to use them.

  • Transforming raw source data into a star model using Power Q…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: Human Resource Management (HRM), Arbeidsrecht, Strategisch HRM, Organisatiekunde en HR-beleid.

In this course, you will learn how to transform raw, unoptimized source data into a well-designed star schema with fact and dimension tables. You will work with Power Query, Power BI, and Microsoft Fabric (Warehouse and Lakehouse) to build a robust semantic layer that makes reporting simpler, faster, and more reliable. The focus is entirely on practical modeling: from analyzing source structures to designing a scalable star model ready for reporting, analytics, and data science.

What you learn

  • The fundamentals of dimensional modeling and the star schema.

  • The purpose of fact and dimension tables and when to use them.

  • Transforming raw source data into a star model using Power Query.

  • Designing star models for Power BI semantic models and Fabric (Warehouse/Lakehouse).

  • How a strong star model simplifies DAX, improves performance, and reduces errors.

  • Guidelines for building transparent, traceable, and reliable datasets.

After this course you will be able to:

  • Independently design a star schema based on source data.

  • Model fact and dimension tables for Power BI and Fabric.

  • Convert non-dimensional source data into a star schema using Power Query.

  • Build Power BI reports and dashboards that are faster, simpler, and less error-prone.

  • Create golden datasets in Fabric that are suitable for analytics as well as data science.

  • Improve data traceability and reliability through consistent modeling.

For whom

  • Data engineers designing star models in Fabric (Warehouse or Lakehouse) or similar platforms.

  • Data scientists who need clean, structured datasets for analytics and modeling.

  • BI specialists and Power BI developers working with non-dimensional source systems.

  • Data analysts managing golden datasets or semantic models.

Prerequisites

  • No specific prerequisites required; affinity with data is recommended.

  • Experience with SQL or Power BI reporting makes the course easier to follow.

  • Basic knowledge of data warehousing or modeling is helpful but not required.

Content (global program)

Part 1

  • Introduction to dimensional modeling.

  • Facts, dimensions, and why the star schema matters for Power BI and Fabric.

Part 2

  • From raw data to star model.

  • Evaluating source structures and identifying pitfalls in operational and relational models.

Part 3

  • Transforming with Power Query.

  • Step-by-step conversion of raw data into fact and dimension tables.

Part 4

  • Star modeling in Power BI and Fabric.

  • Building the semantic model in Power BI versus modeling in Fabric Warehouse or Lakehouse.

Part 5

  • Quality, performance, and DAX.

  • Impact of a strong star model on DAX complexity, performance, and maintainability.

Part 6

  • Golden datasets and best practices.

  • Designing reusable datasets for engineers and scientists, patterns, and Q&A.

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Vraag nu gratis en vrijblijvend informatie aan:

(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
(optioneel)
We slaan je gegevens op, en delen ze met D-Data, om je via e-mail en evt. telefoon verder te helpen. Meer info vind je in ons privacybeleid.