AI+ Pharma™ eLearning

Type product

AI+ Pharma™ eLearning

Train IT Now B.V.
Logo van Train IT Now B.V.

Tip: meer info over het programma, prijs, en inschrijven? Download de brochure!

Beschrijving

Harness AI in Pharma™ to speed drug discovery, optimize trials, and enable precision therapies.

Revolutionize Healthcare Expertise with AI+ Pharma™ for Smarter, Data-Driven Decisions


* Beginner-Friendly Pathway: Ideal for learners and professionals entering the world of AI in pharmaceuticals, offering clear fundamentals and easy-to-grasp concepts
* Integrated Learning Experience: Combines core pharma knowledge with intuitive AI tools, real-world case studies, and guided practice to strengthen analytical and operational skills
* Industry-Focused Growth: Equips you with practical projects, scenario-based exercises, and actionable insights to help you apply AI in drug development, research, c…

Lees de volledige beschrijving

Veelgestelde vragen

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Nog niet gevonden wat je zocht? Bekijk deze onderwerpen: .

Harness AI in Pharma™ to speed drug discovery, optimize trials, and enable precision therapies.

Revolutionize Healthcare Expertise with AI+ Pharma™ for Smarter, Data-Driven Decisions


* Beginner-Friendly Pathway: Ideal for learners and professionals entering the world of AI in pharmaceuticals, offering clear fundamentals and easy-to-grasp concepts
* Integrated Learning Experience: Combines core pharma knowledge with intuitive AI tools, real-world case studies, and guided practice to strengthen analytical and operational skills
* Industry-Focused Growth: Equips you with practical projects, scenario-based exercises, and actionable insights to help you apply AI in drug development, research, compliance, and patient-centric solutions

Module 1: AI Foundations for Pharma

* 1.1 AI and Machine Learning Basics
* 1.2 AI Algorithms and Models
* 1.3 Use Case: Predictive Modeling for Adverse Drug Reactions and Drug-Drug Interactions Using Historical Patient Datasets
* 1.4 Hands-on: Build Predictive Models Using No-Code Tool (Teachable Machine) Module 2: AI in Drug Discovery and Development

* 2.1 AI in Molecular Drug Design
* 2.2 AI in Drug Repurposing
* 2.3 Use Case: AI-Driven Drug Repurposing Successes (COVID-19 Therapeutics)
* 2.4 Hands-On: Practical AI-Driven Molecular Design and Drug Repurposing Using Orange Data Mining Tool
* 2.5 Hands-On 2: Exploring Disease-Drug Associations with EpiGraphDB Module 3: Clinical Trials Optimization with AI

* 3.1 AI-Enhanced Patient Recruitment
* 3.2 Clinical Data Management and Monitoring
* 3.3 Use Case: Pfizer’s AI-Driven Analytics for Optimizing Clinical Trials
* 3.4 Hands-on: Implementing Clinical Data Analytics Using No-Code Platforms (KNIME) Module 4: Precision Medicine and Genomics

* 4.1 Personalized Treatment Strategies
* 4.2 Biomarker Discovery
* 4.3 Case Study: AI-Assisted Biomarker Discovery and Validation in Cancer Treatments
* 4.4 Hands-on: Hands-On Genomic Analysis – Exploring AI-Driven Genomic Interpretation Using CBioPortal Module 5: Regulatory and Ethical AI in Pharma

* 5.1 Ethical Considerations and AI Governance
* 5.2 AI Compliance and Regulatory Frameworks
* 5.3 Case Study: Analyzing Ethical and Regulatory Challenges Encountered in Major AI-Driven Pharma Initiatives
* 5.4 Hands-on: Developing AI Governance Strategies Based on Ethical Frameworks
* 5.5 Hands-on: Literature Mining with LitVar 2.0 Module 6: Implementing AI in Pharma Projects

* 6.1 AI Project Management
* 6.2 Evaluating AI Tools and ROI
* 6.3 Hands-On: Practical AI Project Management Using Airtable for Tracking, Collaboration, and Management Module 7: Future Trends and Sustainability in Pharma AI

* 7.1 Emerging AI Technologies in Pharma
* 7.2 AI for Sustainable Healthcare
* 7.3 Case Study: Analysis of Sustainability Initiatives Driven by AI in Pharmaceutical Industry Leaders
* 7.4 Hands-on: Scenario Planning and Predictive Analytics Using Dashboards for Future-Focused Decision Making Module 8: Capstone Project

* 8.1 Capstone Project 1: Predictive Modeling for Adverse Drug Reactions in Polypharmacy
* 8.2 Capstone Project 2: AI-Enhanced Clinical Trial Recruitment and Retention
* 8.3 Capstone Project 3: AI-Powered Drug Design for Rare Diseases
* 8.4 Capstone Project Evaluation Scheme Tools you will explore

* Python
* TensorFlow
* PyTorch
* Scikit-learn
* Pandas
* NumPy
* SQL
* Jupyter Notebooks
* MLflow
* DataBricks
* RDKit
* DeepChem
* Biopython
* Hugging Face Transformers for Biomedical NLP
* spaCy / Clinical NLP Toolkits
* Apache Spark for Healthcare Data
* Power BI / Tableau for Clinical Dashboards

Exam: 50 questions, 70% passing, 90 minutes, online proctored exam

Instructor-led OR Self-paced course + Official exam + Digital badge

Blijf op de hoogte van nieuwe ervaringen
Er zijn nog geen ervaringen.
Deel je ervaring
Heb je ervaring met deze cursus? Deel je ervaring en help anderen kiezen. Als dank voor de moeite doneert Springest € 1,- aan Stichting Edukans.

Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.

Download gratis en vrijblijvend de informatiebrochure

(optioneel)
(optioneel)
(optioneel)
(optioneel)

Heb je nog vragen?

(optioneel)
We slaan je gegevens op om je via e-mail en evt. telefoon verder te helpen.
Meer info vind je in ons privacybeleid.