AWS Certified AI Practitioner AIF-C01
Verrijk uw carrière met OEM’s
ICT-Trainingen
Beoordeeld met een 9,0 – een van de best gewaardeerde ICT-opleiders
van Nederland.
Waarom OEM?
- Meer dan 20 jaar ervaring in ICT-trainingen
- Ruim 1000 cursussen van 200 topmerken
- Gecertificeerde docenten & bekroonde e-learning
- Officiële partner van Microsoft, EC-Council, Certiport en Pearson VUE
- Flexibele leervormen: klassikaal, online, e-learning of blended
Start vandaag nog en ontwikkel uzelf of uw team met een training die écht resultaat oplevert.
Let op: bij het aanvragen van informatie vragen wij om een telefoonnummer, zodat wij u snel en persoonlijk kunnen adviseren.
AWS Certified AI Practitioner AIF-C01.
Het AWS AI Practitioner (AIF-C01) certificaat is een van de nieuwste toevoegingen aan het aanbod van AWS-certificeringen. Het is bedoeld voor personen die een basiskennis willen opbouwen van kunstmatige intelligentie (AI) en machine learning (ML).
Je leert de belangrijkste AI- en ML-concepten, AWS AI/ML-diensten, verantwoorde AI-praktijken en praktische toepassingen van foundation modellen. Daarnaast doe je praktijkervaring op met AWS-diensten zoals Amazon SageMaker en Amazon Bedrock, en NLP-diensten zoals Amazon Comprehend en Rekognition.
Prerequisites:
None
Course outcome:
- Fundamentals of AI and ML
- Fundamentals of Generative AI
- Applications of F…
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.
Verrijk uw carrière met OEM’s
ICT-Trainingen
Beoordeeld met een 9,0 – een van de best gewaardeerde ICT-opleiders
van Nederland.
Waarom OEM?
- Meer dan 20 jaar ervaring in ICT-trainingen
- Ruim 1000 cursussen van 200 topmerken
- Gecertificeerde docenten & bekroonde e-learning
- Officiële partner van Microsoft, EC-Council, Certiport en Pearson VUE
- Flexibele leervormen: klassikaal, online, e-learning of blended
Start vandaag nog en ontwikkel uzelf of uw team met een training die écht resultaat oplevert.
Let op: bij het aanvragen van informatie vragen wij om een telefoonnummer, zodat wij u snel en persoonlijk kunnen adviseren.
AWS Certified AI Practitioner AIF-C01.
Het AWS AI Practitioner (AIF-C01) certificaat is een van de
nieuwste toevoegingen aan het aanbod van AWS-certificeringen. Het
is bedoeld voor personen die een basiskennis willen opbouwen van
kunstmatige intelligentie (AI) en machine learning (ML).
Je leert de belangrijkste AI- en ML-concepten, AWS AI/ML-diensten,
verantwoorde AI-praktijken en praktische toepassingen van
foundation modellen. Daarnaast doe je praktijkervaring op met
AWS-diensten zoals Amazon SageMaker en Amazon Bedrock, en
NLP-diensten zoals Amazon Comprehend en Rekognition.
Prerequisites:
None
Course outcome:
- Fundamentals of AI and ML
- Fundamentals of Generative AI
- Applications of Foundation Models
- Guidelines for Responsible AI
- Security, Compliance, and Governance for AI Solutions
Who should attend:
This course is intended for all professionals working with AWS.
Demo AWS Certified AI Practitioner AIF-C01 Training
CertKit content:
- E-learning courses:
AWS AI Practitioner: Basic AI Concepts and Terminologies
Course: 25 Minutes
- Course Overview
- AI, ML, and Deep Learning
- Basic AI Terms
- Large Language Models (LLMs)
- Differences of AI, ML, and Deep Learning
- Inference Types
- Data Types of AI Models
- ML Methods
- Course Summary
AWS AI Practitioner: Practical Use Cases for AI
Course: 41 Minutes
- Course Overview
- Where AI/ML Application Provides Value
- When AI/ML Solutions Are Not Appropriate
- Machine Learning Techniques for Specific Use Cases
- Real-World AI Applications
- Using Amazon SageMaker
- Amazon Transcribe
- Amazon Translate
- Amazon Comprehend
- Amazon Lex
- Using Amazon Polly
- Course Summary
AWS AI Practitioner: The ML Development Lifecycle
Course: 30 Minutes
- Course Overview
- Components of a Machine Learning (ML) Pipeline
- Sources of ML Models
- Methods for Using a Model in Production
- SageMaker in an ML Pipeline
- Using SageMaker Data Wrangler in an ML Pipeline
- SageMaker Feature Store in an ML Pipeline
- SageMaker Model Monitor in an ML Pipeline
- Course Summary
AWS AI Practitioner: ML Operations (MLOps)
Course: 31 Minutes
- Course Overview
- Experimentation and Repeatable Processes
- Scalable Systems
- Technical Debt Management
- Achieving Production Readiness
- MLOps Model Monitoring and Retraining
- Accuracy and F1 Score
- Area Under the ROC Curve (AUC)
- Cost per User
- Development Costs
- Customer Feedback
- Return on Investment (ROI)
- Course Summary
AWS AI Practitioner: Basic Concepts of Generative AI
Course: 26 Minutes
- Course Overview
- Foundational Generative AI Concepts
- Foundational Generative AI Models
- Exploring Potential Use Cases for Generative AI Models
- The Foundation Model Lifecycle: Data Selection
- The Foundation Model Lifecycle: Model Selection
- The Foundation Model Lifecycle: Pre-Training
- The Foundation Model Lifecycle: Fine-Tuning
- The Foundation Model Lifecycle: Evaluation
- The Foundation Model Lifecycle: Deployment
- The Foundation Model Lifecycle: Feedback
- Course Summary
AWS AI Practitioner: Capabilities and Limitations of Generative AI
Course: 20 Minutes
- Course Overview
- Generative AI Advantage: Adaptability
- Generative AI Advantage: Responsiveness
- Generative AI Advantage: Simplicity
- Generative AI Disadvantage: Hallucinations
- Generative AI Disadvantage: Interpretability
- Generative AI Disadvantage: Inaccuracy
- Generative AI Disadvantage: Nondeterminism
- Appropriate Generative AI Model Selection
- Business Value and Metrics for Generative AI
- Course Summary
AWS AI Practitioner: Building Generative AI Applications with AWS
Course: 35 Minutes
- Course Overview
- Developing Generative AI Applications with Amazon SageMaker JumpStart
- Amazon Bedrock and Generative AI
- Developing Generative AI Applications with PartyRock Bedrock Playgrounds
- Generative AI Deployment with Amazon Q
- Advantages of Using AWS Generative AI Services
- Benefits of Using AWS Infrastructure for Generative AI Applications
- Cost Tradeoffs of Using AWS Generative AI Services
- Course Summary
AWS AI Practitioner: Design Factors for Applications Using Foundation Models
Course: 22 Minutes
- Course Overview
- Selection Criteria for Pre-Trained Models
- The Effect of Inference Parameters on Model Responses
- Retrieval-Augmented Generation (RAG)
- Storing Embeddings Within Vector Databases
- Cost Tradeoffs with Foundation Model Customization
- The Role of Agents in Multi-Step Tasks
- Course Summary
AWS AI Practitioner: Effective Prompt Engineering Techniques
Course: 23 Minutes
- Course Overview
- Prompt Engineering Concepts and Constructs
- Exploring Chain-of-Thought Prompt Engineering
- Zero-Shot Prompt Engineering
- Single-Shot and Few-Shot Prompt Engineering
- Using Prompt Engineering Prompt Templates
- Benefits and Best Practices of Prompt Engineering
- Potential Risks and Limitations of Prompt Engineering
- Course Summary
AWS AI Practitioner: Training, Fine-Tuning, and Evaluating Foundation Models
Course: 29 Minutes
- Course Overview
- Key Elements of Training a Foundation Model
- Methods for Fine-Tuning a Foundation Model
- Preparing Data to Fine-Tune a Foundation Model
- Evaluating Foundation Model Performance
- Metrics to Assess Foundation Model Performance
- Determining If a Foundation Model Meets Business Goals
- Course Summary
AWS AI Practitioner: Guidelines for Responsible AI
Course: 32 Minutes
- Course Overview
- Features and Tools of Responsible AI
- Responsible Practices and Legal Risks of Generative AI
- Characteristics of Datasets
- Effects and Tools for Bias and Variance
- Transparent, Explainable, Non-Transparent, and Non-Explainable Models
- Utilizing Tools to Identify Transparent and Explainable Models
- Tradeoffs Between Model Safety and Transparency
- Principles of Human-Centered Design for Explainable AI2
- Course Summary
AWS AI Practitioner: Security, Compliance, and Governance for AI Solutions
Course: 34 Minutes
- Course Overview
- Securing AI Systems and Services
- Source Citation and Documenting Data Origins
- Secure Data Engineering
- Security and Privacy Considerations for AI Systems
- Regulatory Compliance Standards for AI Systems
- Services to Assist with Governance and Regulation Compliance
- Data Governance Strategies
- Processes to Follow Governance Protocols
- Course Summary
OEM Office Elearning Menu is an officially accredited Test Centre for Pearson Vue Test & Certiport. You are welcome to contact us for exams available through these Test Centres. Exams can be taken by appointment within office hours.
Exclusive Exam
AWS Certified AI Practitioner AIF-C01
Date
You can start at any time! Please contact one of our training advisors.
Locations
Self-study
Learning method
E-Learning
Training duration: 5+ uur (excl. real live challance labs)
Language
English
Tip!
Provide a quiet learning environment, time and motivation, audio equipment such as headphones or speakers for audio, account information such as login details to access the e-learning platform. toegang tot het e-learning platform.
Er zijn nog geen veelgestelde vragen over dit product. Als je een vraag hebt, neem dan contact op met onze klantenservice.







